China Hot selling Zjt-70 70L/S Zj-70 1.5kw Tri-Lobe Roots Vacuum Pump with Good quality

Product Description

 

Working principle

Roots vacuum pump is a kind of rotary positive-displacement type of pump. The 2 three-lobe rotors keep a certain gap with the housing, and the 2 rotors mesh with each other and keep a certain gap when they rotate in the housing through a pair of synchronous reverse rotation high-precision gears. The diagram on the right shows the structure principle of the pump, from diagram I to IV, the rotor rotates in the house and completes 1 suction and discharge process.
The Roots vacuum pump with three-lobe rotors has technical advantages over the traditional two-lobe rotors in terms of pumping efficiency, maximum allowable differential pressure, temperature, vibration, noise and other major performances.

 

Main features

Compared with the traditional two-lobe Roots vacuum pump, there are below advantages:
1. Much higher efficiency, lower temperature, vibration and noise.
2. More stable and reliable, more convenient to use and maintain.
Other features:
1. Lower failure due to the rotors are fixed and no axial run-out.
2. High-precision transmission gear and precision rolling bearing are used, resulting in low noise and smooth operation.
3. The main shaft use special mechanical seal to ensure oil-free pump chamber.
7. Mechanical seal, oil seal, piston ring labyrinth seal and other types of seal can be used for end cover.
8. It is used in pump combinations together with rotary vane vacuum pump, reciprocating pump, liquid ring pump, dry screw pump and other types of backing pumps to meet various process requirements.

Applications

The advantage of Roots vacuum pump is that it has large pumping efficiency even at low inlet pressure, but ordinary Roots vacuum pump can’t be used alone, it must be used in pump combinations together with the backing pumps. The Roots vacuum pump can be started only after the pressure in the system is pumped to the allowable starting pressure of the Roots vacuum pump by the backing pump.
According to different working pressure and process conditions, the backing pump of Roots vacuum pump can be rotary vane vacuum pump, liquid ring vacuum pump, dry screw vacuum pump and so on. The performance of Roots vacuum pumps are different when combination with different backing pumps.
Roots vacuum pumps are mainly used in any vacuum system requiring large pumping speed and rough and medium vacuum (103-10-2Pa), such as: vacuum coating, vacuum welding furnace, vacuum heat treatment furnace, large space simulation test, microelectronics and integrated circuits, lamp and bulb manufacturing, laser manufacturing, vacuum packaging, centralized pumping system, various chemical processing, vacuum degassing vacuum deaeration, vacuum dehydration, vacuum CHINAMFG drying, vacuum distillation.

Product Parameters

Model Nominal pumping speed(50Hz) Ultimate pressure Maximum allowable pressure difference Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Suction Connection size Discharge Connection size Weight Backing pump recommended
L/s Pa Pa Kw rpm mm mm Kg
ZJT-70 70 ≤0.5 ≥1.2*104 1.5 1450 100 80 165 DVP180 or DSP140
ZJT-150 150 ≤0.5 ≥1*104 3 2900 100 80 165 DVP360 or DSP280
ZJT-300 300 ≤0.5 ≥8*103 4 2900 160 100 275 DVP540 or DSP540
ZJT-600 600 ≤0.5 ≥6*103 5.5 2900 200 160 420 DVP540 or DSP540
ZJT-1200 1200 ≤0.05 ≥5*103 11 2900 250 200 980 ZJTQ-300+DVP540
ZJT-2500 2500 ≤0.05 ≥4*103 18.5 2900 320 250 1800 ZJTQ-600+DVP540
ZJT-5000 5000 ≤0.05 ≥3*103 37 1450 300 300 3580 ZJTQ-1200+DVP800

Note:
1. The pumping speed refers to the maximum pumping speed measured at the inlet pressure of the Roots vacuum pump in the range of 67 pa to 2.67 pa under the conditions of the recommended backing pump. (see p Pumping speed diagram)
2. The ultimate pressure is the lowest value of the stable air partial pressure measured at the pump inlet with a compression vacuum gauge after full pumping without any additional container and no air inlet under the condition of the recommended backing pump.
3. The data of the above table is obtained under the condition of using the recommended backing pump, users can choose different backing vacuum pumps according to different situations, but the main performance index will be changed.
 

Pressure diagram

 

 

Dimension

 

Model L L1 L2 L3 H H1 H2 H3 A A1 A2 D D1 D2 N-M d d1 d2 n-m
ZJT-70 730 191 330 360 270 252   40 256   214 Ф80 Ф125 Ф145 8-M8 Ф50 Ф90 Ф110 4-M8
ZJT-150 938 . 273 132 184 350 330 116.5 30 392 358 300 Ф100 Ф145 Ф165 8-M8 Ф80 Ф125 Ф145 8-M8
ZJT-300 1032 323 185 259 405 385 135 40 455 420 350 Ф150 Ф200 Ф225 8-M10 Ф100 Ф145 Ф165 8-M8
ZJT-600 1282 405 220 304 520 495 165 35 587 548 450 Ф200 Ф260 Ф285 12-M10 Ф150 Ф200 Ф225 8-M10
ZJT-1200 1573 473 296 392 650 625 218.5 58 722 678 560 Ф250 Ф310 Ф335 12-M10 Ф200 Ф260 Ф285 12-M10
ZJT-2500 1890 594 440 552 730 700 220 55 858 810 660 Ф320 Ф395 Ф425 12-M12 Ф250 Ф310 Ф335 12-M10

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Nominal Pumping Speed(50Hz): 70 L/S
Ultimate Pressure: 0.5 PA

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

What Industries Commonly Rely on Vacuum Pump Technology?

Vacuum pump technology finds applications in various industries where creating and controlling vacuum or low-pressure environments is crucial. Here’s a detailed explanation:

1. Manufacturing and Production: Vacuum pumps are extensively used in manufacturing and production processes across multiple industries. They are employed for tasks such as vacuum molding, vacuum packaging, vacuum degassing, vacuum drying, and vacuum distillation. Industries like automotive, aerospace, electronics, pharmaceuticals, and food processing rely on vacuum pump technology to achieve precise and controlled manufacturing conditions.

2. Chemical and Pharmaceutical: The chemical and pharmaceutical industries heavily rely on vacuum pumps for numerous applications. These include solvent recovery, vacuum filtration, vacuum drying, distillation, crystallization, and evaporation. Vacuum pumps enable these industries to carry out critical processes under reduced pressure, ensuring efficient separation, purification, and synthesis of various chemical compounds and pharmaceutical products.

3. Semiconductor and Electronics: The semiconductor and electronics industries extensively use vacuum pumps for manufacturing microchips, electronic components, and electronic devices. Vacuum pumps are crucial in processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, ion implantation, and sputtering. These processes require controlled vacuum conditions to ensure precise deposition, surface modification, and contamination-free manufacturing.

4. Research and Development: Vacuum pump technology is integral to research and development activities across scientific disciplines. It supports experiments and investigations in fields such as physics, chemistry, materials science, biology, and environmental science. Vacuum pumps facilitate processes like freeze drying, vacuum distillation, vacuum evaporation, vacuum spectroscopy, and creating controlled atmospheric conditions for studying various phenomena.

5. Food and Beverage: The food and beverage industry relies on vacuum pumps for packaging and preservation purposes. Vacuum sealing is used to extend the shelf life of food products by removing air and creating a vacuum-sealed environment that inhibits spoilage and maintains freshness. Vacuum pumps are also used in processes like freeze drying, vacuum concentration, and vacuum cooling.

6. Oil and Gas: In the oil and gas industry, vacuum pumps play a role in various applications. They are used for crude oil vacuum distillation, vacuum drying, vapor recovery, gas compression, and gas stripping processes. Vacuum pumps help maintain optimal conditions during oil refining, gas processing, and petrochemical manufacturing.

7. Environmental and Waste Management: Vacuum pumps are employed in environmental and waste management applications. They are used for tasks such as soil vapor extraction, groundwater remediation, landfill gas recovery, and wastewater treatment. Vacuum pumps facilitate the removal and containment of gases, vapors, and pollutants, contributing to environmental protection and sustainable waste management.

8. Medical and Healthcare: The medical and healthcare sectors utilize vacuum pumps for various purposes. They are used in medical equipment such as vacuum-assisted wound therapy devices, vacuum-based laboratory analyzers, and vacuum suction systems in hospitals and clinics. Vacuum pumps are also used in medical research, pharmaceutical production, and medical device manufacturing.

9. Power Generation: Vacuum pumps play a role in power generation industries, including nuclear power plants and thermal power plants. They are used for steam condensation, turbine blade cooling, vacuum drying during transformer manufacturing, and vacuum systems for testing and maintenance of power plant equipment.

10. HVAC and Refrigeration: The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on vacuum pumps for system installation, maintenance, and repair. Vacuum pumps are used to evacuate air and moisture from refrigerant lines and HVAC systems, ensuring optimal system performance and efficiency.

These are just a few examples of industries that commonly rely on vacuum pump technology. The versatility and wide-ranging applications of vacuum pumps make them indispensable tools across numerous sectors, enabling precise control over vacuum conditions, efficient manufacturing processes, and scientific investigations.

China Hot selling Zjt-70 70L/S Zj-70 1.5kw Tri-Lobe Roots Vacuum Pump   with Good quality China Hot selling Zjt-70 70L/S Zj-70 1.5kw Tri-Lobe Roots Vacuum Pump   with Good quality
editor by CX 2024-03-14

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *