China best Vacuum Pump Medical vacuum pump oil near me

Product Description


Product Features

With ultra-low negative pressure design (-50mmHg to -450mmHg) which is continuously adjustable.

With super-smart design and multi operating mode which is more practical.

With stable performance and long life which can operate more than 10,000 hours continuously.

The elaborate designed muffler system controls running noise of the device in a very low range (less than 45 dB), which does not affect the patient’s rest.

With microcomputer chip controlled, it has high accuracy and user-friendly operation interface.

Its intelligent memory system can automatically record the parameters and modes in the last setup, free from repeatedly setting after each starting up.

LCD digital display makes it convenient for user to adjust and operate.


Multiple safety power supply solutions:

1 .It adopts AC/DC power supply with the host in use of full DC power, having no danger of electric shock; 

2.lts built-in spare battery may still endure 4 hours after a power failure, while it can last 8 hours in intermittent mode;

3.A 12V 5A vehicle DC power supply can also be used to ensure the continuous treatment of patients with negative pressure suction unit, when being transferred or going out;

Equipped with overflow alarm device, the unit will automatically stop in service and alarm when the dirty liquid reaches the warning line, to prevent the solution into the host and to avoid secondary pollution and damage.

With the function of automatic gas-leak alarm, the unit will then spontaneously stop and alarm when the negative pressure value remains no change within 10 minutes after the operation.

Multiple safety protections: gas-leak alarm, automatic overheat prevention, overflow prevention, etc.


Product Property

Adjustable scope: lOmmHg

Negative pressure range: -50 mmHg -450 mmHg; pressure display error: +0.2%

Suction flow: 1.51 /min~ 8.0L /min

Intelligence Setup: multi operation setup, more practical 

Noise:not more than 45Db

External power supply:

12V 5A DC switch power (medically certified); the host, DC powered, has no risk of electric shock

Operation status:continuous and intermit-10t

multiple safety protections:

leakage alarm; automatic heat

dissipation while overheated,

anti-overflow protection


Scope of Application:

Suitable of acute wound,chronic diabetic wound and wound drainage of more exudate after surgery.



Debridement undone or wound with the necrotic eschar; Wound with tumor tissue;Sinus connected with the organs; Wound with great vessels or organs exposed.

Detailed Photos


Packing list:

NO. Description Quantity
1 Negative Pressure Drainage Device 1
2 AC Adapter & AC cable 1
3 User  Manual 1
4 Solution collection bottle 1
5 Bottle cap 1
6 Connection interface 3
7 Silicon gel bent pipe 3
8 Filter 3
9 European standard plug 1

Case 1
1. Right foot skin necrosis, infection;
2. Open fractures of the first wedge of the right foot;
3. After debridement suture of right foot skin laceration;
4. After open fracture operation of middle and lower segment of right femur.




Q1Are you trade company or manufacture?

A1: We are manufacture. We have 2 factories in HangZhou and HangZhou City, and we sincerely welcome you visit our factory.

Q2Can I get some samples?

A2: We are glad to offer you free sample.

Q3:What certificate does your company have?

A3: CE, EN ISO13485 Certification. If you need, we can send you the copy.

Q4Are the OEM and ODM available?

A4: Yes. We offer OEM and ODM service. About new product, you can send us your sample. And we make sample for you. For your own brand, you can also send us your design of package and we make the package according to your requirement.

Q5What is the Grade of your clean room?

A5: Our clean room is 100,000 grades.

Q6If we need registration in our own country, then what kind of assistance you can offer?

A6: We can prepare the documents you need; free sample and other thing that can help you finish the registration.

Q7Is there cheap shipping cost to import to our country?

A7: For small order, express will be best. And for bulk order, sea ship way is best but take much time. For urgent orders, we suggest via air to airport plus our ship partner send to your door.

Q8: Can we get support if we have our own market position?

A8: Please inform us your detailed mind on your market demand, we will discuss and propose helpful suggestion for you, to find the best solution for you.


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Portable
Function: Treatment
Theory: Vacuum Pressure
Certification: CE, ISO13485, FSC
LCD Display: With LCD Display
Group: Adult


vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

Can Vacuum Pumps Be Used in the Production of Solar Panels?

Yes, vacuum pumps are extensively used in the production of solar panels. Here’s a detailed explanation:

Solar panels, also known as photovoltaic (PV) panels, are devices that convert sunlight into electricity. The manufacturing process of solar panels involves several critical steps, many of which require the use of vacuum pumps. Vacuum technology plays a crucial role in ensuring the efficiency, reliability, and quality of solar panel production. Here are some key areas where vacuum pumps are utilized:

1. Silicon Ingot Production: The first step in solar panel manufacturing is the production of silicon ingots. These ingots are cylindrical blocks of pure crystalline silicon that serve as the raw material for solar cells. Vacuum pumps are used in the Czochralski process, which involves melting polycrystalline silicon in a quartz crucible and then slowly pulling a single crystal ingot from the molten silicon. Vacuum pumps create a controlled environment by removing impurities and preventing contamination during the crystal growth process.

2. Wafering: After the silicon ingots are produced, they undergo wafering, where the ingots are sliced into thin wafers. Vacuum pumps are used in wire saws to create a low-pressure environment that helps to cool and lubricate the cutting wire. The vacuum also assists in removing the silicon debris generated during the slicing process, ensuring clean and precise cuts.

3. Solar Cell Production: Vacuum pumps play a significant role in various stages of solar cell production. Solar cells are the individual units within a solar panel that convert sunlight into electricity. Vacuum pumps are used in the following processes:

– Diffusion: In the diffusion process, dopants such as phosphorus or boron are introduced into the silicon wafer to create the desired electrical properties. Vacuum pumps are utilized in the diffusion furnace to create a controlled atmosphere for the diffusion process and remove any impurities or gases that may affect the quality of the solar cell.

– Deposition: Thin films of materials such as anti-reflective coatings, passivation layers, and electrode materials are deposited onto the silicon wafer. Vacuum pumps are used in various deposition techniques like physical vapor deposition (PVD) or chemical vapor deposition (CVD) to create the necessary vacuum conditions for precise and uniform film deposition.

– Etching: Etching processes are employed to create the desired surface textures on the solar cell, which enhance light trapping and improve efficiency. Vacuum pumps are used in plasma etching or wet etching techniques to remove unwanted material or create specific surface structures on the solar cell.

4. Encapsulation: After the solar cells are produced, they are encapsulated to protect them from environmental factors such as moisture and mechanical stress. Vacuum pumps are used in the encapsulation process to create a vacuum environment, ensuring the removal of air and moisture from the encapsulation materials. This helps to achieve proper bonding and prevents the formation of bubbles or voids, which could degrade the performance and longevity of the solar panel.

5. Testing and Quality Control: Vacuum pumps are also utilized in testing and quality control processes during solar panel production. For example, vacuum systems can be used for leak testing to ensure the integrity of the encapsulation and to detect any potential defects or leaks in the panel assembly. Vacuum-based measurement techniques may also be employed for assessing the electrical characteristics and efficiency of the solar cells or panels.

In summary, vacuum pumps are integral to the production of solar panels. They are used in various stages of the manufacturing process, including silicon ingot production, wafering, solar cell production (diffusion, deposition, and etching), encapsulation, and testing. Vacuum technology enables precise control, contamination prevention, and efficient processing, contributing to the production of high-quality and reliable solar panels.vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China best Vacuum Pump Medical   vacuum pump oil near me		China best Vacuum Pump Medical   vacuum pump oil near me
editor by CX 2024-04-04


Leave a Reply

Your email address will not be published. Required fields are marked *