China manufacturer Sk/2sk China Electric Stainless Steel Pump Liquid /Water Ring Vacuum Pump for Milking Machine or Plastic Extrusion Line Made of Cast Iron with Good quality

Product Description

Detailed Photos

 

Product Description

SK water ring vacuum pump is widely used in food processing, mining, pulp, glass industry, chemical, pharmaceutical, ceramics, sugar, printing and dyeing, metallurgy and electronics industries. It is used to pump or compress air and other non-corrosive, insoluble in water, no CHINAMFG particles, in order to form a vacuum and pressure in a closed container, suction gas to allow a small amount of liquid mixed.

SK water ring vacuum pump in the working process, the gas compression process is isothermal, so in the compression and suction explosive gas, it is not easy to occur danger, so its application is more widely.

Product Parameters

1 2 3 4 5
end cap The exhaust disk After the bracket bearing Rear axle bearing cap
6 7 8 9 10
axle round nut rear axle housing stuffing box gland Packing gland ring
11 12 13 14 15
padding flat key impeller pump body Suction disc
16 17 18 19 20
Before the collar Before the bracket Front axle bearing cap flat key coupling
21        
water inlet        

1 2 3 4 5
end cap Rear intake and exhaust disk impeller bearing bracket round nut
6 7 8 9 10
Rear axle bearing cap axle bearing rear axle housing Packing gland ring
11 12 13 14 15
padding Packing gland ring flat key pump body communicating pipe
16 17 18 19 20
Front suction and exhaust disk Before the collar coupling flat key round nut
21 22      
Front axle bearing cap water inlet      

 

Model Size Ultimate vacuum Maximum air flow Motor Speed Water consumption Pump diameter
kpa M3/min KW Rpm L/min mm
SK 1.5 8.3 1.5 4 1440 15 70
3 3 5.5 1440 20 70
6 6 11 1440 30 80
9 9 15 970 50 80
12 12 18.5 970 50 80
15 15 30 730 60 150
20 20 37 730 60 150
30 30 55 730 100 150
42 42 75 730 130 150
2SK 1.5 3.3 1.5 7.5 1440 15 40
3 3 7.5 1440 20 40
6 6 15 1440 30 70
9 9 18.5 970 50 100

Company Profile

ZheJiang CHINAMFG Pumps is a manufacturer with many years of experience in mining, power generation, dredging, hydraulic, irrigation, slurry transportation, construction, seawater, oil and gas transportation, solar energy system and other industries. 

We can provide you with high efficiency and energy saving of multistage pump, boiler feed pump, slurry pump, oil pump, self-priming pump, chemical pump, mining pumps, submersible pumps, sewage pumps, sea water pumps, solar pumps, fire pumps, split case pumps, irrigation pumps and other products.

Our Products sales well to Europe, America, Southeast Asia, Oceania, Middle East and Africa more than 90 countries.

Our products are widely used in mining, mineral processing, metallurgy, iron and steel, boiler water supply, oil field, chemical industry, paper making, water conservancy facilities, sewage treatment, drainage and water supply.

We have strong technical force, advanced production testing equipment, scientific management methods, stable and reliable quality products, perfect after-sales service.

We are committed to providing the highest level of customer service, competitive prices, fast delivery and comprehensive, sophisticated products. Your satisfaction is our ultimate goal!
 

Working House

Certificate

Our Services
1. Processing with supplied drawing
2. Processing with supplied samples
3. Produce all kinds of anti CHINAMFG spare parts except for pump
4. Product warranty:lifetime, no matter how long to use,if there is air hole in the flow parts,please return it,will give you a new 1 to replace.

Application

Packaging & Shipping

FAQ

1. Q: Whats the MOQ ?
A: 1 set for regular product ,the special 1 we need to discuss.
 
2. Q : What’re your payments ? 
A: For small order valve < 4000USD, our customer chose 100% T/T.
For order valve >4000USD, we can accept 30 % T/T in advance , 70 % should be paid before shipment.
 
3 . Q : How long is the deliver time ?
A : For the order in stock ,we will deliver goods at once against payment.
For the orders out of stock , the products time is 7 days for bare pump, 25 days for electric pump set or diesel engine pump set , the deliver time is base on the shipping date and your order by sea.
 
4. Q: What about the package ?
A : Standard export plywood case .
 
5.Q : How is the pump delivered to us ?
A : For urgently order, we can ship by air, for large order ,it will be delivered by sea ,vehicle or multi-modal transport.

 
6. Q : How long is the warranty ?
A: According to the inter nation standards , pump in standard operation is 1 year ,3 months for spare parts.
 
Any further questions, lets talk together.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Online Service
Warranty: 12-24 Months
Max.Head: >150m
Max.Capacity: >400 L/min
Driving Type: Motor
Impeller Number: Single-Stage Pump
Customization:
Available

|

vacuum pump

What Is the Vacuum Level and How Is It Measured in Vacuum Pumps?

The vacuum level refers to the degree of pressure below atmospheric pressure in a vacuum system. It indicates the level of “emptiness” or the absence of gas molecules in the system. Here’s a detailed explanation of vacuum level measurement in vacuum pumps:

Vacuum level is typically measured using pressure units that represent the difference between the pressure in the vacuum system and atmospheric pressure. The most common unit of measurement for vacuum level is the Pascal (Pa), which is the SI unit. Other commonly used units include Torr, millibar (mbar), and inches of mercury (inHg).

Vacuum pumps are equipped with pressure sensors or gauges that measure the pressure within the vacuum system. These gauges are specifically designed to measure the low pressures encountered in vacuum applications. There are several types of pressure gauges used for measuring vacuum levels:

1. Pirani Gauge: Pirani gauges operate based on the thermal conductivity of gases. They consist of a heated element exposed to the vacuum environment. As gas molecules collide with the heated element, they transfer heat away, causing a change in temperature. By measuring the change in temperature, the pressure can be inferred, allowing the determination of the vacuum level.

2. Thermocouple Gauge: Thermocouple gauges utilize the thermal conductivity of gases similar to Pirani gauges. They consist of two dissimilar metal wires joined together, forming a thermocouple. As gas molecules collide with the thermocouple, they cause a temperature difference between the wires, generating a voltage. The voltage is proportional to the pressure and can be calibrated to provide a reading of the vacuum level.

3. Capacitance Manometer: Capacitance manometers measure pressure by detecting the change in capacitance between two electrodes caused by the deflection of a flexible diaphragm. As the pressure in the vacuum system changes, the diaphragm moves, altering the capacitance and providing a measurement of the vacuum level.

4. Ionization Gauge: Ionization gauges operate by ionizing gas molecules in the vacuum system and measuring the resulting electrical current. The ion current is proportional to the pressure, allowing the determination of the vacuum level. There are different types of ionization gauges, such as hot cathode, cold cathode, and Bayard-Alpert gauges.

5. Baratron Gauge: Baratron gauges utilize the principle of capacitance manometry but with a different design. They consist of a pressure-sensing diaphragm separated by a small gap from a reference electrode. The pressure difference between the vacuum system and the reference electrode causes the diaphragm to deflect, changing the capacitance and providing a measurement of the vacuum level.

It’s important to note that different types of vacuum pumps may have different pressure ranges and may require specific pressure gauges suitable for their operating conditions. Additionally, vacuum pumps are often equipped with multiple gauges to provide information about the pressure at different stages of the pumping process or in different parts of the system.

In summary, vacuum level refers to the pressure below atmospheric pressure in a vacuum system. It is measured using pressure gauges specifically designed for low-pressure environments. Common types of pressure gauges used in vacuum pumps include Pirani gauges, thermocouple gauges, capacitance manometers, ionization gauges, and Baratron gauges.

\vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China manufacturer Sk/2sk China Electric Stainless Steel Pump Liquid /Water Ring Vacuum Pump for Milking Machine or Plastic Extrusion Line Made of Cast Iron   with Good quality China manufacturer Sk/2sk China Electric Stainless Steel Pump Liquid /Water Ring Vacuum Pump for Milking Machine or Plastic Extrusion Line Made of Cast Iron   with Good quality
editor by CX 2024-04-15

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *