China manufacturer PP Rotary Piston Vacuum Pumps with high quality

Product Description

PP Single-Stage Rotary Piston Pumps
PP pumps are quiet running vacuum pumps with high pumping capacity at both high and low pressures. The triplex piston design is inherently dynamically balanced and is practically vibration-free. Even in dirty applications, the PP enjoys unequalled durability, as there is no metal-to-metal contact between the pump piston and the cylinder; clearances are filled with oil.
All PP models include an integral, positive pressure lubrication system to insure reliable lubrication at all pressure levels. PP pumps are water-cooled; however, optional
air-cooling systems are available on several sizes. Adjustable gas ballast valves are included as standard equipment for handling water and other vapor loads.

Features:
Operate continuously at Any Pressure Under 10000Pa
Lower Footprint Design of Moter on the pump,Lower water waste.
With Vibration Mounting- Quiet Running.
Easy Installation, No Special Requirement
Lub.oil fill with each other parts,No any metals contact inside.
With Gas Ballast Permits Handing of Condensable Vapors
Pump can be used at any applications,include dirty applications
The pump has a shaft and double sets of cams.no any attached parts to keep the balance, and running with quiet.

Technical parameters

model PP70 PP150
normal displacement                                     m3/h(CFM) 255(150) 505(300)
motor power                                                  kw 5.5(7.5) 11(15)
rotary speed                                                  RPM 1055 870
oil capacity                                                     L(gallons) 23(6) 38(10)
cooling water consumption@60°F(16ºC)L/min(CFM) 4(1) 6(1.5)
weight    kg 364 693
maximum gas ballast flow                             m3/h(CFM) 34(20) 34(20)
typical blank-off pressure with 5% gas ballast        Pa(Torr) 266(2.0) 266(2.0)
ultimate pressure(Mcleod Gauge)                          Pa(Torr) 1.33(1×10-2) 1.33(1×10-2)
water inlet G1/4″ G3/8″
water outlet G3/8″ G1/2″
suction 3″ANSI 4″ANSI
exhaust 2″ANSI 3″ANSI
typical noise level @1330Pa                             Dba 71 72

 Capacity Curves

Overall dimensions
PP70

PP150

Typical applications
Vacuum CZPT , Package , Coating

About HangZhou Ever-power group(HZPT):
Q: Are you trading company or manufacturer ?
A: HZPT group consists in 3 factories and 2 abroad sales cooperations.we are making vacuum pumps,air compressors and gearboxes.
Q: How long is your delivery time ? What is your terms of payment ?
A: Generally it is 30-45 days. The time may vary depending on the product and the level of customization. For standard products, the payment is: 30% T/T in advance ,balance before shippment.,for customized products,50% downpayment is requested normally.
Q: What is the exact MOQ or price for your product ?
A: As an OEM company, we can provide and adapt our products to a wide range of needs.Thus, MOQ and price may greatly vary with detail size, material and further specifications;when you place orders,pleasure contact us in advance to communicate all details.

About vacuum pumps:
Q: How is vacuum measured?
A: 1 standard atmosphere at standard conditions will support a column of mercury 760mm high. This is where the linear measurement in vacuum comes into play.760mm can be also measured in inch Hg (760mm = 29.92″) and microns (760,000 microns = 760 mm = 29.92″). Depending on what vacuum level you require, you will use a different unit of measure for the vacuum measurement. When measuring vacuum below 1 micron, we go to scientific notation (Example: 1 x 10-3 mm Hg)
Q: What is an Absolute vacuum gauge?
A: An absolute pressure gauge is 1 that will measure your vacuum system without regard to and independent of local barometric pressure. Many dial (Bourdon) gauges and electronic Transducers reference local barometric pressure as their base measurement. However, since these devices are calibrated at SEA LEVEL conditions, operation of these devices above sea level will cause an erroneous reading. Either the gauge/transducer must be recalibrated for the higher elevation use or an absolute pressure gauge would need to be used.
A Torr gauge is an absolute pressure gauge and operates on the principle of an altimeter. The Gauge case is evacuated by the vacuum from the process and exerts a negative pressure on a hermetically sealed capsule. The lowering of the pressure in the gauge case causes the capsule to expand thereby causing the gauge movement to turn the pointer. The Torr gauge is highly sensitive and accurate in the lower pressure regions (0-100 mm Hg).
Q: how to judge vacuum degree?
A: Atmospheric Pressure- is variable but is standardized at 760 Torr or 101.325 kPa.
Low Vacuum- also called rough vacuum, is a vacuum that can be achieved or measured by basic equipment such as a vacuum cleaner.
Medium Vacuum- is a vacuum that is typically achieved by a single pump, but the pressure is too low to measure with a mechanical manometer. It can be measured with a McLeod gauge, thermal gauge, or a capacitance gauge.
High Vacuum- is vacuum where the MFP of residual gasses is longer than the size of the chamber or of the object under test. High vacuum usually requires multistage pumping and ion gauge measurement. NASA has revealed that the vacuum level recorded on the moon was 1×10-9 Torr.
Ultra-High vacuum- requires baking the chamber to remove trace gasses and other special procedures. Most standards define ultra-high vacuum as pressures below 10-8 Torr.
Deep Space- is generally much emptier than any artificial vacuum. Perfect Vacuum – is an ideal state of no particles at all. It cannot be achieved in a laboratory, although there may be small volumes which, for a brief period, happen to have no particles of matter in them.
Q: what type of vacuum pump should I choose for my application:
A: There is no 1 vacuum pump that is best for all applications. However, there are some general guidelines to remember for your selection.
Oil Lubricated Rotary Pumps are used in applications requiring fairly deep vacuum (< 1 mmHg) and pumping relatively clean gases (Air/N2). Oil lubricated pumps are available in Single stage & Dual stage depending on what vacuum level you need. Additionally, all the oil lubricated pumps are available in Belt drive or Direct drive configurations. Belt drive is preferred in applications where pump longevity and durability is desired because of the low pump rpm (<700 rpm) and their high oil holding capacity which also guards against premature wear from oil breakdown. Direct drive pumps are preferred because of their low cost, compactness and portability.
Dry Vane pumps; are used when a pump is required that does not require lubricating oil because of the objection to oil vapor discharge from the pump and filling/disposal issues with oil. Rotary vane dry pumps however are capable of only maximum vacuum of approximately 25″ Hg and can only pump clean DRY air. Any presence of moisture in the gas being pumped can lead to the pump rusting because of the absence of lube oil.
Rotary Screw Dry Pumps are used in applications where a high vacuum is required (up to 0 .571 mm Hg) and the process gas is not compatible with lubricating oil in oil sealed rotary pumps. These pumps are fairly expensive and are used where a lubricated oil sealed pump or liquid ring pump is not desired. Pleasure email us( [email protected] ) for more details.
Liquid Ring Pumps are used in applications where the process gas may contain a sizable amount of condensable vapors (water, solvents, acids, etc.) that will react negatively with the lubricating oil in Rotary Vane pumps, thereby causing pump damage. Being that a liquid ring pump is a centrifugal unit, the sealing medium can be water, oil or any other fluid compatible with the process. Liquid ring pumps are relatively inexpensive and can use any sealing fluid (water, oil, ethylene glycol, solvents, etc.) that is compatible with the process.
Q:what is gas ballast on vacuum pumps?
A: A gas ballast is a regulated in-bleed of a dry gas (usually Air/Nitrogen) into the compression portion of the pumping cycle of the vacuum pump. The gas acts as a stripping agent that will saturate with the contaminating vapors present in the pump and expelled out the discharge of the pump. Gas ballasts are usually installed as a standard component on all oil lubricated rotary vacuum pumps to aid in the removal of condensable vapors from the vacuum pump oil.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Fore Pump
Working Conditions: Dry
Customization:
Available

|

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.

Forward centrifugal pump

Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.

Self-priming centrifugal pump

Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.

Screw Pump

The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Vacuum Pump

Diaphragm Pump

Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.

Atmospheric pressure is a key factor in a vacuum pump system

Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
Vacuum Pump

The screw pump is less efficient in pumping gases with smaller molecular weight

Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.

China manufacturer PP Rotary Piston Vacuum Pumps   with high quality China manufacturer PP Rotary Piston Vacuum Pumps   with high quality
editor by Dream 2024-04-30


Posted

in

by

Tags:

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *